Table salt and other alkali metal chloride oligomers: structure, stability, and bonding.
نویسندگان
چکیده
We have investigated table salt and other alkali metal chloride monomers, ClM, and (distorted) cubic tetramers, (ClM)(4), with M = Li, Na, K, and Rb, using density functional theory (DFT) at the BP86/TZ2P level. Our objectives are to determine how the structure and thermochemistry (e.g., Cl-M bond lengths and strengths, oligomerization energies, etc.) of alkali metal chlorides depend on the metal atom and to understand the emerging trends in terms of quantitative Kohn-Sham molecular orbital (KS-MO) theory. The analyses confirm the high polarity of the Cl-M bond (dipole moment, VDD, and Hirshfeld atomic charges). They also reveal that bond overlap derived stabilization (approximately -26, -20, and -8 kcal/mol), although clearly larger than in the corresponding F-M bonds, contributes relatively little to the (trend in) bond strengths (-105, -90, and -94 kcal/mol) along M = Li, Na, and K. Thus, the Cl-M bonding mechanism resembles more closely that of the even more ionic F-M bond than that of the more covalent C-M or H-M bonds. Tetramerization causes the Cl-M bond to expand, and it reduces its polarity.
منابع مشابه
Highly polar bonds and the meaning of covalency and ionicity--structure and bonding of alkali metal hydride oligomers.
The hydrogen-alkali metal bond is simple and archetypal, and thus an ideal model for studying the nature of highly polar element-metal bonds. Thus, we have theoretically explored the alkali metal hydride monomers, HM, and (distorted) cubic tetramers, (HM)4, with M = Li, Na, K, and Rb, using density functional theory (DFT) at the BP86/TZ2P level. Our objective is to determine how the structure a...
متن کاملAlkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism
We have analyzed the structure and bonding of gas-phase Cl-X and [HCl-X](+) complexes for X(+)= H(+), CH3 (+), Li(+), and Na(+), using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl(-) and HCl for the various cations. The Cl-X bond becomes longer and weaker along X(+) = H(+), CH3 (+), Li(+), and Na(...
متن کاملEffect of hygroscopicity of the metal salt on the formation and air stability of lyotropic liquid crystalline mesophases in hydrated salt-surfactant systems.
It is known that alkali, transition metal and lanthanide salts can form lyotropic liquid crystalline (LLC) mesophases with non-ionic surfactants (such as CiH2i+1(OCH2CH2)jOH, denoted as CiEj). Here we combine several salt systems and show that the percent deliquescence relative humidity (%DRH) value of a salt is the determining parameter in the formation and stability of the mesophases and that...
متن کاملThe Effect of Alkali Metal Promoters on the Stability and Coke Formation of Platinum-Based Propane Dehydrogenation Catalysts: A Kinetic Study
The kinetics of catalyst deactivation and coke formation during dehydrogenation of propane over supported Pt–based catalysts and, in particular, the effect of alkali metal promoters on catalyst activity and stability were studied. The analysis of propane conversion data showed that there is an optimum level of alkali metal promoter loading for both catalyst activity and stability.A model ba...
متن کاملSesquicaesium hemisodium tetracyanidoplatinate(II) sesquihydrate
The title compound, Cs(1.5)Na(0.5)[Pt(CN)(4)]·1.5H(2)O, was isolated from solution as a salt. The tetra-cyanidoplatinate (TCP) anions are stacked in a linear quasi-one-dimensional arrangement along the b axis, with Pt⋯Pt inter-actions of 3.6321 (5) Å. The mixed alkali metal TCP contains three distinct alkali metal positions in the structure that do not show any mixed occupancy: Cs1 (site symmet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inorganic chemistry
دوره 46 13 شماره
صفحات -
تاریخ انتشار 2007